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ABSTRACT 

There  are various naturM local ze ta  funct ions associa ted wi th  groups and 

rings for each prime p. We consider the question of how these functions 
behave as we vary the prime p and the groups (or rings) range over a spe- 
cific class of groups (or rings), e.g. finitely generated torsion-free nilpotent 
groups of a fixed Hirsch length or p-a~iic analytic groups of a fixed dimen- 
sion. Using a result of Macintyre's on the uniformity of parameterized 
p-adic integrMs, together with various natural parameter spaces we define 
for these classes of groups, we prove a strong finiteness theorem on the 
possible poles of these local zeta functions. 

N o t a t i o n  

denotes  an  n - tup le  ( X l , . . .  ,Xn) for some n E N.  

G (~) denotes  the  d i rec t  p roduc t  of n copies of the  group G. 

T~d, p denotes  the  class of r ings add i t ive ly  i somorphic  to Z d. 

7~d denotes  the  class of r ings add i t ive ly  i somorphic  to  Z d. 

~rd,p denotes  the  class of torsion-free f ini tely genera ted  n i lpo ten t  pro-p  groups  

of d imens ion  d. 

T~ denotes  the  class of tors ion-free f ini tely genera ted  n i lpo ten t  groups  of Hirsch 

length  d. 

bld,p denotes  the  class of uni form pro-p  groups of d imens ion  d. 

~n,d,p denotes  the  class of compac t  p-adic  ana ly t i c  groups  conta in ing  a d- 

d imens iona l  no rma l  uniform subgroup  of index n. 
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1. In t roduc t ion  

In [GSS], [duS1] and [duS2], the following zeta functions are defined and consid- 

ered for a finitely generated abstract or profinite group G: 

~ ( s )  = E I G: H I -~ 
HEX*(G)  

where * 6 {<, '% A} and 

X<(G)  = { H I H  is a subgroup of finite index in G}, 

• Y'~(G) = {H I H is a normal subgroup of finite index in G}, 

A'^(G) = {H I H is a subgroup of finite index in G and/7/--- G}; 

here G denotes the profinite completion of G. There are natural "local factors" 

associated with these zeta functions for each prime p: 

~,p(s)  = E I G: H I -s 
HeX;(G) 

where A'p(G) = {H 6 X*(G) I H has p-power index in C}. For the class of 

finitely generated torsion-free nilpotent groups we can decompose ~ ( s )  as an 

Euler product of these local factors: 

p 

In [GSS] the rationality of these local factors as functions of p-S was established 

for nilpotent groups G. Although we cannot hope for a generalization of the Euler 

product to non-nilpotent groups, in [duS1] and [duS2] the rationality result of 

[GSS] is extended to p-adic analytic groups G and finitely generated abstract 

groups of finite rank. These results rely on Denef's application of Macintyre's 

quantifier elimination for Zp to prove the rationality of various p-adic integrals 

over semi-algebraic sets, and a subsequent extension of this method by Denef and 

van den Dries to integrals over sub-analytic sets ([D1], [M1] and [DvdD]). In this 

present paper we shall use a parameterized version of Denef's result together with 

a result due to Macintyre which allows us to calculate p-adic integrals uniformly 

for all primes p ([D2] and [M2]) to make some contribution towards the following 

questions: 
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QUESTION 1: For a fixed group G, how does ~ ,p(s )  behave as p varies over ali 

primes p ? 

QUESTION 2: For a fixed prime p, how does ~ , v ( s )  behave as G varies over p- 

adic analytic groups of a fixed dimension d (or nilpotent groups of a fixed Hirsch 

length d)? 

In [GSS] a more specific version of Question 1 was asked for the class of nilpo- 

tent groups: 

QUESTION 3: For a fixed finitely generated nilpotent group G do there exist 

finitely many rational functions W{(Y,  X),  ..., W*(Y, X )  of two variables over Q 

such that for each prime p there is an i for which (p(s) = W*(p,p -s) ? 

In [GSS] this question is answered affirmatively for free nilpotent groups of class 

2. However in a recent paper ([duSL]) more significant progress was made for the 

function (~,p(S) in which an affirmative answer to Question 3 is a corollary of an 

explicit computat ion of ^ ~G,p(s) in terms of the combinatorial data  of ~ = AutG 

and representations of ~. 

There is some hope to develop these combinatorial methods to gain a more 

explicit hold on the functions ~ , v ( s )  and ¢~,v(s) but the logical techniques of 

Denef, van den Dries and Macintyre already give us the following partial answer 

to Questions 1 and 2: 

THEOREM 1: Let d E N.  There exist ai,bi E Z (i = 1 .... ,h) such that for each 

prime p, * E {<, ,~, A} and torsion-free finitely generated nilpotent group G of 

Hirsch length d, there exists a polynomial kO~,p(X) E Q[X] such that 

* s  5'P(P-s) 

~G,p( ) = l-Ij<_h( 1 _ p-ajs-b~)" 

The logical techniques therefore give us a very strong finiteness theorem for 

the poles of our local zeta functions ~,p(S) but give us little control on the 

numerators. If  we fix G we can at least bound the degree of ~ , p ( X )  as p varies. 

We have a similar result to Theorem 1 for the class of uniform pro-p groups of 

dimension d. Using the fact that  every compact p-adic analytic group contains a 

uniform pro-p group of finite index we can extend this to a result about compact 

p-adic analytic groups at the expense of bounding the index of such a uniform 

pro-p group. 
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We begin in §2 by outlining Macintyre's result. In §3 we prove a version of 

Theorem 1 for zeta functions ~,,p(S) counting subrings in a ring L additively 

isomorphic to Z d or Z d. To a finitely generated nilpotent group G there is 

naturally associated a Lie algebra L with the property that for almost all primes 

p, ~,p(S) = ~,v(s). We can thus deduce Theorem 1 for almost all primes p as 

a corollary of results in §3. A similar approach suffices to prove the analogous 

result for uniform pro-p groups of dimension d < p. However in §4 we detail 

a more direct approach to Theorem 1 which spares us having to avoid finitely 

many primes. 

Both the proofs of §3 and §4 depend on defining a natural parameter space 

Xd C Z~ for the class of nilpotent groups of Hirsch length d (or rings isomorphic 

to Z d or d-dimensional uniform pro-p groups) with which we can parameterize 

the integrals defining ~ ,p(s ) .  

We can in fact refine Theorem 1 to prove that the fibres of the natural map from 

this parameter space Xd to the space of rational functions (~,p(s) are definable 

subsets of Z~. 

We observed above that for nilpotent groups we can decompose the global 

zeta function as an Euler product of the local factors. Unfortunately the lack 

of control that  we presently have on the numerator ~ , p ( X )  means that we can 

infer little about the poles of ¢b(s) from the results of this present paper. 

ACKNOWLEDGEMENT: Part of this work was carried out whilst I was visiting 

the Institute for Advanced Studies at the Hebrew University of Jerusalem dur- 

ing the year on Field Arithmetic. I should like to thank the Institute for their 

fantastic hospitality and to thank Alex Lubotzky and Ishai Ilani for discussions 

whilst I was thinking about this work. 

2. Macintyre's Uniformity Theorem 

We begin by describing Macintyre's theorem on the uniformity of certain de- 

finable p-adic integrals. This theorem will be our basic tool in the remaining 

sections. 

Let v: Qp ~ Zu{+cc}  be the valuation on Qp with v(p) = 1 and let I • ] be 

the normalized absolute value with I x I= p-V(~). Let # denote the additive Haar 

measure on Qp normalized at Zp, and also (by abuse of notation) the product 
m measure on free Zp-modules of the form Zp.  
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If A C_ Q~+k and A E Q~ then we define 

A(A) = {~ E Q~ ] (5:, A) E A}. 

Let f and g be measurable functions on Q~+k and A a measurable subset of 

Q~+k. Let s be a positive real number. 

Definition 2.1: 

I ( f , g , A , A , s )  = f I f(2,~) I~1 g(2,~)ld#. 
JA G) 

In [D1] and [D2] Denef proved that I ( f ,  g, A, A, s) is a rational function in p-8 

if A, f and g are definable in some language appropriate for the algebraic theory 

of Qp. Here we shall consider A, f and g definable in the language of ring theory 

LRINGS with +, =,. ,  0, 1. The formulas defining A, f and g then make sense 

when realized in Qp for all primes p. Macintyre considered the question of how 

the rational function I ( f ,  g, A, A, s) varies with the prime p. 

Before we state Macintyre's theorem we recall the definition of a simple func- 

tion. 

Definition 2.2: A function 0: Qp -* Zu{+oc} is simple if there is a finite par- 

tition of Q~ into definable subsets A such that for each A there are polynomials 

ql(x), q2(x) E Qp[2], with q2 non-zero on A, and a positive integer e such that 

~(5:)-~ (1/e)v(ql(~)/q2(5:)), 

for 2 E A. 

For our purpose the following form of Macintyre's result will be sufficient: 

PROPOSITION 2.3: Let A, f and g be definable in LnINGS. Then there exist aj, 

bj E Z (j = 1, ..., h) such that for each prime p and for all A E Qpk there exists a 

polynomial q~,p(X) E Q[X] such that 

• x,p(p -~) 
I ( f ,  g, A, A, s) = Yij<h( 1 _ p-a~8-b~ )" 

The degree o[ q~,p is a simple &action in A. I f  we fix ]~ 6 Z k then the degree of 

~X,p is bounded as p varies. 

A more detailed statement of Macintyre's result can be found in §7 of his 

paper [M2] where some control on the nature of the numerator is detailed but 
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not such as to be useful in our context. The proof of Macintyre's theorem relies 

on a uniform approach to quantifier elimination for Qp and a uniform Cell- 

Decomposition Theorem. As we shall only be plundering the results at this stage 

we need go no further into the proof of this theorem but rather refer the interested 

reader to Macintyre's paper. We should also make reference to the work of Pas 

who proved a similar uniformity result to Macintyre's (see [P1] and [P2]). 

In a subsequent paper we analyse the proof of Proposition 2.3 in order to show 

that some sort of progress can be made for integrals defined in the ring Fp [It]]. 

This will have implications for counting subgroups and subalgebras in Lie groups 

and algebras over Fp[[t]]. 

3. Zeta functions associated to rings 

Let L be a not necessarily associative ring and p a prime. Define 

¢~,v(s)-- ~ [L:H I-* 
HEX;(L) 

where • E {_<, 4, A} and 

X<(L) = {H [ H is a subring of p-power index in L}, 

2¢'~(L) = {H [ H is an ideal of p-power index in L}, 

X~(L) = {H I H e X<(L) a n d / : / ~  L}. 

Let TCd,p be the class of rings L additively isomorphic to Zp a. We define a nat- 

ural moduli space for 7"¢a,p. To each L E 7"¢d,v associate the subset A(L) C_ 
(Md(Zp))d = Z d3 defined by: 

A(L) = { ( (a i j l ) , . . . ,  (aijd)) [ suchthere thateXiStSei.eja basis= k=lEdel'''''aijkek'ed of L } 

Let Wd,p = ULEna,p A(L). Wd,p is an algebraic subvariety of Z d3. The group 

GLd(Zp) has a natural action on Wd,p via ( (aijl), ..., (aijd) )g = ( (bijl), ..., (bijd) ) 
where bijk = ~gltgjmatmn(g-1),~k. It is easy to see that the orbits of GLa(Zp) 

correspond to isomorphism classes of Zp-rings. Let •d,p be the subclass of T~d, p 

consisting of those rings which have the structure of a Lie algebra. The subset 
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Vd,p = ULeL~.p A(L) is a subvariety of Wd,p since the fact that ((aijl), ..., (aijd)) 
are structure constants for a Lie algebra is defined by polynomial conditions in 

aijk. In the next section we will see that Vd,p is a parameter space for the class 

of d-dimensional uniform pro-p groups. 

We raise the following natural questions (cf. [GS]): 

Q U E S T I O N  3.1: Describe the algebraic varieties W d ,  p and Vd, p. What are their 
irreducible components? What are their dimensions? Are the different irreducible 
components definable by structural conditions on the corresponding rings or Lie 

algebras? 

Rather than concentrating on these questions, we turn to the task of using the 

variety Wd,p to parameterize the integrals defining ~,p(s) .  We define subsets Mp 

of Trd(Zp) × Z d3 for each * E {_<, ,~, A}. If ((m~j), (aijl), ..., (aijd)) C Trd(Zp) × Z d3 

then we let rhi denote the ith row of (ra~j), m i -  t its transpose and Az = (aij l) .  

(1) Let M~ be the set of ((m~j), (aijl), ..., (aijd)) satisfying: 

for 1 _< i, j _< d 3 Yi~', .-., Yi d C Zp such that 

d 
k r~iAtm~ = ~ Yijm~l for l = 1, ..., d. 

k = l  

(2) Let M~ be the set of ((m~j), (aijl), ..., (a~jd)) satisfying: 

for 1 < i,j,  _< d3 Yi~, -.., y~jd E Zp such that 

d d 

~-~m~kakjt = ~-'~y{kmkt fo r  l =  1 ..... d. 
k=l k----1 

(3) Let M# be the set of ((m{j), (aljl), ..., (a,jd)) satisfying: 

for 1 < i , j  < d3 Yij,Zij E Zp such that  
d 

i f~ i  = ~-~ Zij?~ j then for each 1 < i , j , r  < d 
j----1 

d d 

mi = ~-~Y{jfij and E ZikZjz~kAtrh~---- Z aijknk~. 
k,l=l k=l 

If ~ = ((ai j l ) , . . . ,  (aijd)) e m(n) then, setting f = mllm22". "mnn and g = 

m l l m 2 2  n . . .  m n n ,  

(~,p(S) = I ( f ,  g, ]tip, ~, s). 
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An explanation of why this is true for • E {<, ,0} may be found in §3 of [GSS]. 

For * = A, it is an easy exercise to adapt the proof of Proposition 2.7 of the 

same paper [GSS]. Thus Wd,p parameterizes the integrals describing the functions 

( ~ , p ( 8 )  I L E T~d,p}. Now the subsets Mp and functions f and g are definable 

in LRINGS and the formula defining Mp is independent of the prime p. We can 

therefore immediately apply Macintyre's theorem of §2 to deduce: 

THEOREM 3.2: Let d E N.  There exist aj, bj E Z (j  = 1, ..., h) such that for each 

prime p, * E {<, ,~, A} and L E T~d, p there exists a polynomial ffl~,,p(X) E Q[X] 

such that 
• *L,p(p 

C~,p(S) = i-ij_<h( 1 _ p-aj s-b~)" 

Let T~d denote the class of rings L additively isomorphic to Z d. 

COROLLARY 3.3: There exist aj, bj E Z (j = 1, ..., h) such that for each L E 7"¢d, 

prime p and * E {_, ,~, A} there exists a polynomial ~ , p ( X )  E Q[X] such that 

• L (p 
¢ ~ , p ( S )  ---- i-ij<_h( 1 _ p -a j s -b j  )" 

I f  we [ix L E 7~d then deg~, ,p(X) is bounded as p varies. 

Proo~ The first part follows from the fact that 

= 

The bound on deg ffY~,,p(s) (which had already been established in [GSS]) follows 

from the last statement of Proposition 2.3 since there exists ~ E Z d3 such that  

?~ E A(L ® Zp) for all primes p. I 

There is a natural topology on Wd,p inherited from the topology on Zp a3. If we 

give the set 7~a,p the structure of a topological space by defining open neighbour- 

hoods of a point L E T~d,p by UL,N = {L' [ L /pNL ~= L'/plVL'} for N E N, then 

the natural map 

¢: Wd,p ~ T~d, p 

is continuous. Define the topology on the set of power series Q [IX]] via the 
oo  ~z metric d ( F ( Z ) ,  G(X))  = p-O(F(X)-a(X)) where O(~-~n= o a,~x ) = m if a,~ = 0 

for m > n and am ¢ 0. Then it is clear that  the map Z*: ~a,p ~ Q[[X]] defined 
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by L ~ ~ ¢~,p(s) is continuous. Note that since the image of Z* is contained in 

the set of all rational functions, a countable subset of the set of all power series, 

we have by cardinality considerations that,  since "F~d,p is uncountable, there are 

uncountably many rings with the same zeta function ~,p(s) .  In fact the fibres 

of this map are definable subsets of Wd,p: 

THEOREM 3.4: We can parti t ion Wd,p into countably many  det~nable subsets 

{Ai I i • I }  on which Z* o ~ is constant. 

Proo~ The function 0": Wd,p --* Z U (+cx~} defined by 

H deg~(a ) , p (X  ) 

is a simple function by Macintyre's theorem, Proposition 2.3. So there exists a 

finite partition of Z d3 into definable subsets A such that for each A there are 

polynomials ql (2), q2(2) • Qp[2] with q2 non-zero on A, and a positive integer e 

such that 

O*(~t) = (1 /e)v(q1(5) /q2(5))  

for 5 • A. 

Let 5 • A N Wd,p. n d 3 There is a neighbourhood 5 + p Zp ot 0 such that if 
n d 3 • A N ( 5 + p  Z p ) t h e n  

= 

-d3 • qp[2],v(c ) This follows from the fact that (i) if q(2) = ~aeNd3 CaX~ ~ . . .  Xd3 

> rl  for all c) • N d3 and v(q(5)) = r2 then v(q(~t + p'~- '~zd3)) = r2 and 

(ii) v(ql(~t)/q2(5)) = v(ql(a))  - v(q2(a)). 
. r Suppose now that L and L' • T~d,p and that d e g ~ , p ( X ) ,  degq~L,,p(X ) <_ m. 

Let ap~(L) = card {H • X p ( L )  [] L: H [= pn}. The ith coefficient of ~ , p ( X )  is 

determined by ap~ (L ) for n _< i. Thus L/p'~ L = L ' /pm L ' implies that q~ L,p(X ) = 
. r • i , ,p(X ) since 

a * p ~ ( L ) = a ~ , ( L / p m L ) =  * L' m , ap,( /p  L )  = ap~(L') 

for i < m. 
r n  d 3 If b E 6 + p Zp then the ring ~(b) has the property that ~b([~)/pm~(b) TM 

Therefore the function Z* o ~ is constant on A 5 Wd,p N (0 +p~ Z d3 ~b(~)/pm~(5). ) 

where r = max{n, 0*(5)}. This completes the proof of Theorem 3.4. | 
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We can in fact use the structure of definable sets provided by Macintyre's 

quantifier elimination for Zp to give another interpretation of Theorem 3.4. If 

A is definable then, by quantifier elimination, A is a finite union of sets of the 

X n Y where X is open and Y is the zero-set of a polynomial (see [M1D. So 

we have countably many polynomials f such that on each subvariety Wd,p(f) of 

Wd,p defined by 

Wd,p(f) = (a E Wd,p I f ( a )  = 0} 

Z* o (I) is locally constant. 

We end this section by raising some questions of a related nature. It is natural 

to ask how the zeta function of a subring of L relates to that of L. Surprisingly 

little is known about this question even if we restrict ourselves to subrings of the 

form pnL. Define the injective map 

/~p: T~d,p ~ 7"~d, p 

by L ~ p L .  

QUESTION 3.5: How do the zeta functions behave under the map Ap? 

For d = 3 it is a straightforward exercise to prove: 

LEMMA 3.6: 

4 z p 3 , p ( 8 )  - ¢ ; L , p ( s )  = - 

Can we generalize Lemma 3.6 to larger dimensions? Notice that the degree of 

the polynomials ~ L , v ( X )  increases as n --~ oc. This hints perhaps at a natural 

partition of Wd,v and Tid,p which would provide a better setting in which to refine 

Theorem 3.4. To describe this partition we make the following: 

Detinition 3.7: We define a ring L E Tid,p to be p o w er fu l  o f  o r d e r  k if p is 

odd and pkL >_ L 2 but pk+lL ~ L 2 or p = 2 and 2k+lL > L 2 but 2k+2L ~ L 2. 

L is powe r f u l  o f  o r d e r  cx~ if pkL > L 2 for all k. 

Note that our usual definition of powerful now corresponds to the concept of 

powerful of order k _> 1. If L is powerful of order k then plL is powerful of order 

l + k .  

We partition T~d, p into subsets T~d,p,k consisting of powerful rings L of order 

k. The map/Xp restricts to a bijective map 

/~p: T~d,p,k ~ f'~d,p,k.-bl. 
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Let Wd,p,k = ~-l(~d,p,k)  then Wd,v,k is certainly definable since 

kr'nd 3 \ ~k"l- l ~ d  3 
for p odd Wd,p,k = Wd,p N p z,p ~ ~p , 

for p = 2 Wd,2,k = Wd,2 tA 2k+lz  d3 \ 2k+2zd3. 

11 

QUESTION 3.8: How does ~*L,p(X) behave on Tid,p,k for fixed k? In the light of 

Theorem 3.4, might the degree of @*L,p(X) be bounded on Tid,v,k ? IS Z* finite 

valued on  T~d,p, k ? 

4. Z e t a  f u n c t i o n s  a s soc i a t ed  t o  g r o u p s  

There are various classes of groups which have Lie algebras associated to them 

in such a way that there is a one-to-one correspondence between subgroups and 

subalgebras. In these settings we can deduce the uniformity results of the previous 

section for the zeta functions associated with groups defined in the introduction. 

Let G be a torsion-free, finitely generated nilpotent group. Associated with 

G there is a Lie algebra Lc (Q)  over Q of dimension equal to the Hirsch length 

h(G) of G. There is an injective mapping log: G --~ LG(Q) such that the set 

logG spans LG(Q) (see [S1], Chapter 6 or [GS]). In general, logG will not be an 

additive subgroup of L6(Q) .  However in [GSS] the following result is established: 

PROPOSITION 4.1: Let Td denote the class of torsion-free finitely generated nilpo- 

tent groups of Hirsch length d. Then there exists f E N depending only on d 

such that if  G C 7-4 then L -- logG / is a Lie subring of L c ( Q )  and 

for • E {_<, % A} and all primes p not dividing f . 

This theorem gives us an immediate corollary to Corollary 3.3 where we replace 

7~d by Td but restrict ourselves to p not dividing f .  However we can do better  

than this by directly parameterizing the integrals defined in [GSS] describing 

Let G be a finitely generated torsion-free nilpotent pro-p group. Fix a Mal'cev 

basis (Xl, ..., xd) for G. G may then be identified with the set of all p-adic words 

of the form 

= . . .  x y  
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with a = (al .... , ad) E Z~. There exist polynomials over Qp defining 

d d ~: Zp x Zp -* Zp, 
d d /z: Z d x Zp ~ Zp, 

such that  for 5, b E Z d and k E Z v 

• (a)  = k ) ) ,  

= x ( , ( a ,  

The existence of such polynomials was first proved by P. Hall [Hi. In order to pa- 

rameterize the zeta functions ¢~,p(s) we need to analyse Hall's proof to establish 

the following: 

LEMMA 4.2: Let  ~rd,p denote  the class o f  torsion-free f initely generated ni lpotent  

pro-p groups o f  dimension d. There is a bound N(d ) ,  depending only  on d, such 

that  for G E ~rd,p, the polynomials  A = (A: , . . . ,  Ad) and # = (#1 . . . .  , #d) have 

degree bounded by N(d ) .  

Proof." We proceed by induction on the dimension d. For d = 1, we have N(1) = 

2. Suppose that the lemma is true for nilpotent pro-p groups of dimension < d 

and that the degree of the polynomials defining multiplication and exponentiation 

in G E ~,p for i = 1 . . . .  , d - 1  is bounded by a(d). Let G C Td,p. Then, for 

(:) 

x ( , ( a ,  = 
d 

X~l-}-b l  "r-[ { ~ - b l  ~ -  l a.bl "~ai ~ b2 bd 
1 1 ~ :  ~i - :  J ~2 " ' ' X d "  
i-=2 

N o w  
x l b l x U f l x ~  1 = X l  b l ( x ~ l x l x i ) b l x - (  1 

and x~12ClXi c,.1 c~ d - i  = X l X i +  1 • X d 

where ci,j C Zp since Gi = {x~ ~ ' ' '  x~d d [ a l , . . . ,  ad C Zp} is a central series in G. 
~ a  I . a i+l  a d . . . Set Ni = t * :  ~i+: " " X d  l a l ,a i+:  . . . . .  ad E Zp} f o r i = 2 ,  d - 1 .  N i h a s a  

Mal'cev basis (xl, x i+~, . . . ,  xd). Applying our inductive hypothesis to Ni 
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where the ~i,j are polynomials in bl of degree bounded by a(d). So 

x-~blx71x~i -1 ~,,,1 ¢,,~-, --~ X i X i + l  " ' ' X  d 

where the ¢i,j are polynomials in bx of degree bounded by (a(d)) 2. Hence 

(x blxTix 1)_o, o, o, 1 o d_,  
X i X i ~ -  1 • . . X d "  

where the Oi,j are polynomials in bl and ai of degree bounded by (a(d)) 3. Sub- 

stituting the above into (1) and applying our inductive hypothesis to G2 we can 

deduce that # is bounded in degree by (a(d)) d+2. Set/3(d) = (a(d)) d+2. 
ad We now turn to bounding the degree of A. Let vi = ri(x~l,.. . ,  x d ) where Ti(9) 

is the ith Petresco word defined by 

y ~ ' "  y~ = 71(~)'.. • ~(~)(~) . - .  ~,(~). 

An inductive argument on i together with the bound /3(d) on the degree of # 

suffices to establish a bound 3'(d) on the degree of polynomials wi,j (i, j _< d) 

defining the coordinates of vi: 

Wi,1 Wi,d 
V i  "-~ X 1 " " " X d • 

Since vi C "yi(G), the ith term of the lower central series of G and G has class 

_< d ,v~= l  f o r i > d .  So 

x(A(~,k)) = v~ = x(k.a).vd (~1 .v~ (~) 

Since 7i(G) has dimension < d, the coordinates of are defined by polyno- 

mials of degree bounded by 7( d).i.a( d). Hence the degree of A is bounded by 

7(d).d.a(d).Z(d) k-1. This completes the proof of Lemma 4.2. | 

We can now define generic polynomials which when specialized define multi- 

plication and exponentiation in G E Tct,p. Let I = {0, ..., N(d)} and 

A(X1, ..., Xa, Y, C~; 6~ e I d+l) = ~ CaX7  ~. . .  X ~ d Y  ~+~ 
& E I , i + a  

M(X1 ,  Xd, Vl, Vd, D a , ~ ; 5 , ~ E I  d) E - ~ "  . . . . . . .  , = Da , zX  1 . . X ~ Y ? ~  . . . Y:~.  
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Then, for each G E "Yd,w there exist ca(G), d~,~(G) E Qp such that 

A(~, k) = a(~, k, ~(a) ) ,  
.(~, ~) = M(~, ~, d~,~(a)). 

~d(d--1)/2 In [GSS] §2, for each G E Td,p subsets definable in LR]NaS M~,p C_ ~p = 

Trd(Zp), * E {_<, 4, A}, are constructed such that 

• ~ I =-~ i=-~ (G'P(8)  ----- I~,p [ ' / n I l  "'" [ todd dlz. 

We refer the reader to the paper [GSS] for the precise defining conditions for 

the subsets M~,p which are similar in character to those defined in §3 of this 

paper for rings. In a similar fashion to the formulas for rings, we can then 

define formulas tg*(Xij, Ca, D~,~) in the polynomials A(X1, ..., Xd, K Ca) and 

M(X1 .... , Xd, II1, ..., Yd, Da,~) such that for each G E Ta,p 

M~,p = {(mij)  E -pzd(d-1)/2 i ffg*(mij,c~(G),dafi(G)) is true in Zp} 

= A* (ca(a), da2(G)). 

Thus the integrals 

f~ I =-~ I=-. • (ca(a),da,¢(G)) Ira11 "'" [mda dp 

parameterize all the zeta functions ~ ,p(s )  for G E Td,p and p prime. Macin- 

tyre's theorem therefore gives us an analogous result for nilpotent groups to the 

uniformity results of §3. 

THEOREM 4.3: Let d E N. There exist aj, bj E Z (j = 1, ..., h) such that for each 

prime p, , E {_<, <a, A} and G E Td,p there exists a polynomial ~b,p(X) E Q[X] 

such that 
~b,p(p -=) 

I f G  e Td then, since C~,p(s) = ~, ,p(S)  (where Gp denotes the pro-p completion 

of G), we get the same result for Td as in Corollary 3.3. This establishes Theorem 
. r 1 of the Introduction. If we fix G E Td then deg iPa,p(X ) is bounded as p varies. 

The bound on the degrees of the rational functions ~,p(S) as p varies had already 

been established in [GSS] using Macintyre's theorem. This bound was applied 
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to Question 3 posed in the Introduction to establish an affirmative answer for 

(*p,p(s) where F is the free nilpotent group of class 2. 

As we mentioned in the Introduction, the rationality of (~,p(s) can be general- 

ized to the class of compact p-adic analytic groups. But here we make use of the 

rationality of integrals definable not in LRINGS but the language describing the 

analytic theory of Qp, LAN, proved by Denef and van den Dries (see [DvdD]). As 

yet, no analogue of Macintyre's result exists for the analytic theory of Qp as p 

varies. However there is a certain setting in which, as for nilpotent groups, there 

exists a Lie algebra associated with an analytic group G whose subalgebras are 

in one-to-one correspondence with subgroups of G. 

Definition 4.4: G is a u n i f o r m  pro-p  g r o u p  if (1) G is (topologically) finitely 

generated, (2) G is powerful (i.e. G p > [G, G] if p > 2 and G 4 > [G, G] if p = 2) 

and (3) G is torsion-free. 

We refer the reader to [DduSMS] for details about uniform pro-p groups. In 

particular, to a uniform pro-p group G there is naturally associated a Lie algebra 

L(G) which is defined by the following intrinsic Lie algebra operations that exist 

on the group G: 
g + h = limn....~(gP~hV'~) p-~, 

(g, h) = l im~_~[g p~ , hPn] v-2n , 

A.g = g~, 

where g, h E G and A E Zv. This Lie algebra L(G) has the following properties, 

the first of which was established by Ilani [I]: 

PROPOSITION 4.5: Let G be a uniform pro-p group. 

(i) If  G has dimension d(G) <_ p then 

* S * Ca,p( ) = 

r o t ,  e { < , 4 } .  

(ii) For all primes p 
= ^ (L(c),v(s). 

Proof: We prove (ii) since the details of (i) can be found in [I]. The subtlety of 

(i) arises from the fact that  if H _< G then in general H need not be closed under 

the intrinsic Lie operations on G. The condition of (i) on the dimension enables 

Ilani to show in fact that this subset is closed under the Lie algebra operations 
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and conversely that any Lie subalgebra of L(G) is the image of some subgroup 

H.  However in the situation of part (ii) we need only consider subgroups H 

isomorphic to G (and similarly for subalgebras of L(G)) since for a pro-p group 

/7/~ G il and only if H ~ G . The subgroup H is therefore uniform and hence 

the intrinsic Lie algebra operations on G restrict to the intrinsic Lie operations 

defined on H as a uniform group. The fact that these Lie algebras are isomorphic 

then follows immediately from the isomorphism (which is a continuous map) of 

G and H as uniform groups. 

Conversely, as outlined in [I], if H is a uniform Lie subalgebra of L(G) then it 

is a subgroup of G since it is closed under the Baker-Campbell-Hausdorff series 

which defines the group operation on G. Again H will be isomorphic to G as a 

subgroup if H is isomorphic to L(G) as a subalgebra since the group operation 

on H is determined by the structure of H as a Lie algebra. 

Thus we have a one-to-one correspondence between subgroups of G isomorphic 

to G and subalgebras of L(G) isomorphic to L(G); that the correspondence is 

index-preserving follows from [DduSMS] Corollary 4.15. This completes the proof 

of (ii). II 

For ~,p(S) this immediately gives us an analogue of Theorem 4.3 where we 

substitute for ~rU,p the class//u,p of uniform pro-p groups of dimension d. But 

for ~,p(S) and ~ ,p ( s )  we must restrict ourselves to primes p ~_ d. However we 

can recover those primes p < d because, although we do not have the uniformity 

result of Macintyre, we now only have to consider a finite number of primes and 

for p fixed we do have a parameterized version of Denef and van den Dries's result 

in the analytic language LAN. Recall that LAN is the language having for each 

n E N and each power series 

SEN" 

an n-ary function symbol f to be interpreted as the corresponding function Z~ 

Zp. 

THEOREM 4.6: Let p be a prime and A C_ Qp+k, f ,  g: Qp+k ~ Qp be definable 

in LAN. There exist aj,bj E Z (j = 1,. . . ,h) such that for all ~ E Q~ there exists 

a polynomial ~x(X)  E Q[X] such that 

I ( f ,g ,A ,~ , s )  = g2X(P-~) 
1 - I j < h ( 1  - 
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Proof: Denef's proof in the algebraic language LRING S w a s  a consequence of the 

proof of the rationality of definable integrals avoiding resolution of singularities 

but making use instead of a Cell-Decomposition Theorem which allows one to 

integrate I one variable at a time. The proof in [DvdD] of the rationality of 

integrals definable in LAN depends on resolution of singularities but van den 

Dries gives in his paper [vdD] a proof without resolution of singularities. We 

omit the details but it is a straightforward corollary, as in Denef's paper [D2], to 

deduce the above theorem from van den Dries's proof. | 

We show now how to parameterize the zeta functions ~,p(S) for G C bld,p 

and * E {<, ,~}. In [duS2] we defined a language LG for uniform pro-p groups 

containing function symbols for multiplication and p-adic exponentiation in G 

together with a binary relation defining the lower p-series in G, {G p~ }ieN. If du 

denotes the normalized Haar measure on G we showed in that same paper how 

to express (~,p(S) as an integral 

(,) INS. p p--h(m ..... ge)s-k(m ..... g") d~' 

where h: G (d) --, Z, k: G (d) -~ Z and N~,p C G(d) are definable in LG. 

Fix a set of topological generators Xl , . . .  ,Xd for G. Then G can be identified 

with the set of all p-adic words of the form: 

al ad 
X 1 • . .  X d 

with a = ( a l , . . . ,  ad) E Zp d. This is a general property of uniform pro-p groups. 

Lazard called these "coordinates of the second kind". He proved (see [Lal] or 

[DduSMS]) that there exist power series defining multiplication and exponenti- 

ation with respect to this coordinate system. In [duS2] we used these facts to 

write the La-definable integral (*) as an integral definable in LAg. Alterna- 

tively we could have used the "coordinates of the first kind", which are defined 

via the intrinsic Lie algebra L(G) defined on G. Each element of G has a unique 

expression of the form 

X(Ct) = a l x  1 + ' ' '  -t- a d X d  

with ~ = (al, . . . ,  ad) E Zp d. These are known as the coordinates of the first kind. 

In [Lal] IV.3.4.4 and [DduSMS] Exercise 9.3 it is proved that these coordinates 

define the same manifold structure as the coordinates of the second kind. It 
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follows then that  there exist power series Fad(f i ,  Y) • qp [[)(, Y]] (l = 1 . . . .  , d) 

such that  
= 

Exponentiat ion is defined in a much more straightforward manner with respect 

to these coordinates: 

x ( a )  = 

In the same fashion as [duS2] we can use this coordinate system to replace the 

integral ( . )  by an integral 

M I~1 g(ra) l d# I f ( n )  

where f ,  g: Qp d~ --+ Qp are LAN-definable functions depending only on d and 

M~,p = { ~  = (mq) E Md(Zp) I ~*(~t) is true in Qp} 

where (I)*(Xij; 1 ~ i , j  <_ d) is an LAN-formula defined using the analytic func- 

tions FG.L (l = t ,  ..., d). In the same manner as for nilpotent groups, to parame- 

terize these integrals for G E bld,p it will suffice to show that  we can parameterize 

the functions Fad (l = 1, ..., d) defining multiplication in uniform pro-p groups 

of dimension d with respect to coordinates of the first kind. To do this we use 

the fact that  the group operation on G can be recovered from the intrinsic Lie 

algebra L(G) via the Baker-Campbel l -Hausdorff  series. This will allow us to 

parameterize the functions Fc,l using the structure constants of the Lie algebra 

L(G). 

LEMMA 4.7: There exist power series Fl( f( ,  Y ,  Cqk; 1 <_ i, j, k <_ d), 1 = 1 , . . . ,  d, 

such that if  G E Ud,p then the functions FG,~(X, Y) (det~ning multiplication in G 

with respect to a chosen basis x l , . . . ,  Xd of  G) have the following form: 

FGd(X ,Y)  = Fz( f ( ,Y ,  aijk(G);1 <_ i , j , k  <_ d) 

where (aij,(G)),. . . ,  (aijd(G)) C Zp d3 are the structure constants of the intrin- 

sic Lie algebra of G with respect to the chosen basis xl ,  ..., xd, i.e. (xi, xj) = 
d  k=l a jk(a)x . 

Proo~ Let (I)(X, Y) oo X = ~-~=1 un( ,Y) denote the Baker-Campbell-Hausdorff 

series where u , ( X , Y )  = ~-~eqe(X,Y)e is a summation, over all vectors ~ = 



Vol. 86, 1994 ZETA FUNCTIONS OF GROUPS AND RINGS 19 

( e l , . . . , e , )  of positive integers satisfying < ~ > =  el + " "  + e8 = n - 1, of 

left-normed repeated Lie brackets 

Let x, y E G then 

(x,Y)~ = ( x , Y , . . . , r , x , . . . , 5  . . . .  ) .  

e l  e 2  

o o  

x.y = CL(c)(x, y) = ~ un(x, y) 
n----1 

where addition and the Lie bracket on G are taken to be the intrinsic Lie algebra 

operations defined on L(G). (For details of this fact consult [DduSMS] Chapter  

10 using the stronger estimate for the size of the coefficients qe given by Lazard 

[La2], namely 

qe.p(<e>-l)/(p-1) E Zp; 

alternatively IV.3.2.6 of [Lal] and section 4 of [I] also contain details of this 

result.) 

Let (aijl(G)),..., (aijd(G)) E Z d3 be the structure constants of the intrinsic 

Lie algebra of G with respect to some choice of basis xl, ..., Xd so that  

d 

(x~, xj) = ~ a~(G)x~. 
k = l  

In a similar manner to Lemma 10.9 of [DduSMS], for each a = (el . . . .  ,e , ) ,  

there exist polynomials P~(.~, ]2, Cijk; 1 _< i, j,  k _< d), l = 1 .... , d, such that  for 

each G E 14d,p 
d 

(x(~z), x(b))e : E P~(gz, b, aijk(G))x, 
/=1 

for all ~, b E Z d. Since 

x(~(a, ~)) = x(~).x(~) 

= ¢~(x(~) ,  x(~)) 
d 

l = l  ~" 

= x ( E  E 
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we can choose F~(X,Y,  Cijk(G);1 <_ i , j , k  <_ d) to be the power series 

~ qePg (X,  Y,  C~jk). This completes the proof of Lemma 4.7. I 

Hence, using the power series Fl(f(, ~',Cijk(G); 1 < i , j ,  k <_ d) in )~, Y and 

Cijk, l = 1 , . . . , d ,  we can define subsets A* C_ Zp d2 × Z d3 such that MS, p = 

A*(aijk(G)). So ~5,p(S) = I ( f ,g ,A*,a l jk (G) ,s )  for * e {<,,~,}. We can there- 

fore apply Theorem 4.6 and Proposition 4.5 (ii) to deduce 

THEOREM 4.8: Let d E N and p prime. There exist aj,bj C Z (j -= 1 . . . .  ,h) 

such that for * E {<, ,% A} and G E lJd,p there exists a polynomial kV~.p C Q[X] 

such that 
• 5,p(p -s) 

• S 
¢5,p( ) = 1-ij<h( 1 _ p-~j,-b~) 

Combining this with Proposition 4.5 and Theorem 3.2 we also get uniformity 

in the prime p: 

COROLLARY 4.9: Let d E N. There exist aj, bj E Z (j = 1 , . . . ,  h) such that t'or 

each prime p, * E (<_, 4, A} and G E L~d, p there exists a polynomial ~ 5 , p ( X )  E 

Qv[X] such that 

• 5,p(p -s) 
¢5,p(s) = rij<h( 1 _ p-a~-bj)" 

Note that  the fact that one can recover G from its Lie algebra via the Baker-  

Campbell-Hausdorff series implies an equivalence of categories between d-dimen- 

sional uniform pro-p groups and d-dimensional powerful Zp-Lie algebras (see 

IV.3.2.6 of [Lal] ). Hence the parameter space we defined in section 3 for powerful 

d-dimensional Zp-Lie algebras is also a parameter space for the class of uniform 

pro-p groups of dimension d. We can prove similar results to the end of section 

3 about the behaviour of the map Z*: l~d, p -"+ Q[[X]] defined by G, ) ~5,p(s) 

on this parameter space. 

Finally we consider how we can extend Theorem 4.8 to the class of compact 

p-adic analytic groups. Let G be a compact p-adic analytic group with a normal 

uniform subgroup Go of finite index in G. In IdeS2] it is shown how to extend the 

integrals counting subgroups and normal subgroups in Go to integrals counting 

subgroups and normal subgroups in G. In this case we will lose the possibility of 

proving uniformity in p since these integrals are defined over the analytic language 

LAg which has no uniformity properties at present and we can no longer hope 

to use the Lie algebra which only gives us information about subgroups in Go. 
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However, if we fix the prime p, we can parameterize these integrals if we restrict 

ourselves to the class Gn,d,p of compact p-adic analytic groups G containing a 

d-dimensional normal uniform subgroup of index n. We have to bound the index 

n since these integrals are in ( d +  n)d variables. Let F i ( X , Y )  e Qp[[)( , f ' ] ]  

(i = 1 , . . . ,  d) denote the power series defining the group operation on the uniform 

subgroup Go as above. Let Yl , . . . ,  yn be a transversal for Go in G. Then there 

exist power series Hij (X) • Qp [[X]] (i = 1 , . . . ,  d, j = 1 , . . . ,  n) such that for each 

j = 1 . . . .  ,n  

yjx( )y; 1 = x ( a ) y ,  = x ( & ( a ) ) .  

By [duS2], for * • (<,_ ,~}, there exist LAg-definable functions f ,  g: ~pr~(dl-n)d ~ Qp  

and a subset 

M~,p = {rh = (mij) • M(d+~)xd(Zp) I (I)*(rh) is true in Qp} 

where ¢*(Xij;  1 < i < d + n, 1 < j < d) is an LAg-formula defined now using 

the analytic functions Fi (i = 1 , . . . ,  d) and Hij (i = 1 , . . . ,  d, j = 1 , . . . ,  n), such 

that 

= /  I f (  r~) l ' lg ( r~) ld /~ .  

g l  

 5,p(s) 
JM 

The task now becomes to parameterize the functions Hi( f ( )  i = 1 . . . .  , d defining 

the coordinates of an automorphism ~: Go ~ Go such that 

= 

But an automorphism of G induces a Lie algebra automorphism of the underlying 

Lie algebra L(G) (see [DduSMS] Chapter 4). Therefore the power series Hi(J() ,  

i = 1 . . . .  , d, with respect to the coordinates of the first kind are just given by 

multiplication by a matrix D~ =- (dij~) • GLd(Zp), i.e. 

x(fz) ~" = x(aDv) .  

Hence we can define subsets 

A* c z (d-t-n)d x Z da x ~ nd2 
_ - p  - p  

using the power series Ft( X ,  Y ,  Cijk( G); 1 < i, j, k < d), 1 = 1 , . . . ,  d, of Lemma 

4.7 and the matrices D m =  (Dijm), m = 1 , . . . ,  d, such that 

M~,p = A* (aijk(G), dijm) 

where (dijm) -- Dym. Applying Theorem 4.6 we can deduce: 
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THEOREM 4.10: Let d, n 6 N and p prime. There exist aj, bj E Z ( j  = 1 , . . . ,  h) 

such that for * E {_<, *~} and G C gn,d,p there exists a polynomial ~b,p E Q[X] 

such that 

(5,p(s) = l-ij___h(1 _ p-ajs-bj  )" 

Since the technique for expressing (~,p(s) as a definable integral for a uniform 

group depends on using the Lie algebra associated with G it seems less clear how 

we can extend Theorem 4.8 to a uniformity result for (~,p(s) in the case tha t  G 

is a compact  p-adic analytic group. 
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